Math 221: LINEAR ALGEBRA

Chapter 6. Vector Spaces §6-2. Subspaces and Spanning Sets

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Subspaces and Spanning Sets

Linear Combinations and Spanning Sets

Subspaces and Spanning Sets

Linear Combinations and Spanning Sets

Subspaces and spanning Sets

Subspaces and spanning Sets

Definition (Subspaces of a Vector Space)
Let V be a vector space and let U be a subset of V . Then U is a subspace of V if U is a vector space using the addition and scalar multiplication of V .

Subspaces and spanning Sets

Definition (Subspaces of a Vector Space)
Let V be a vector space and let U be a subset of V . Then U is a subspace of V if U is a vector space using the addition and scalar multiplication of V .

Theorem (Subspace Test)
Let V be a vector space and $\mathrm{U} \subseteq \mathrm{V}$. Then U is a subspace of V if and only if it satisfies the following three properties:

1. U contains the zero vector of V , i.e., $\mathbf{0} \in \mathrm{U}$ where $\mathbf{0}$ is the zero vector of V.
2. U is closed under addition, i.e., if $\mathbf{u}, \mathbf{v} \in \mathrm{U}$, then $\mathbf{u}+\mathbf{v} \in \mathrm{U}$.
3. U is closed under scalar multiplication, i.e., if $\mathbf{u} \in \mathrm{U}$ and $\mathrm{k} \in \mathbb{R}$, then $\mathrm{ku} \in \mathrm{U}$.

Subspaces and spanning Sets

Definition (Subspaces of a Vector Space)
Let V be a vector space and let U be a subset of V . Then U is a subspace of V if U is a vector space using the addition and scalar multiplication of V .

Theorem (Subspace Test)
Let V be a vector space and $\mathrm{U} \subseteq \mathrm{V}$. Then U is a subspace of V if and only if it satisfies the following three properties:

1. U contains the zero vector of V , i.e., $\mathbf{0} \in \mathrm{U}$ where $\mathbf{0}$ is the zero vector of V.
2. U is closed under addition, i.e., if $\mathbf{u}, \mathbf{v} \in \mathrm{U}$, then $\mathbf{u}+\mathbf{v} \in \mathrm{U}$.
3. U is closed under scalar multiplication, i.e., if $\mathbf{u} \in \mathrm{U}$ and $\mathrm{k} \in \mathbb{R}$, then $\mathrm{ku} \in \mathrm{U}$.

Remark

The proof of this theorem requires one to show that if the three properties listed above hold, then all the vector space axioms hold.

Remark (Important Note)

As a consequence of the proof, any subspace U of a vector space V has the same zero vector as V, and each $\mathbf{u} \in \mathrm{U}$ has the same additive inverse in U as in V.

Remark (Important Note)

As a consequence of the proof, any subspace U of a vector space V has the same zero vector as V, and each $\mathbf{u} \in \mathrm{U}$ has the same additive inverse in U as in V.

Examples (Two extreme examples)
Let V be a vector space.
1 . V is a subspace of V.
2. $\{0\}$ is a subspace of V , where $\mathbf{0}$ denotes the zero vector of V .

Problem

Let A be a fixed (arbitrary) $\mathrm{n} \times \mathrm{n}$ real matrix, and define

$$
\mathrm{U}=\left\{\mathrm{X} \in \mathrm{M}_{\mathrm{nn}} \mid \mathrm{AX}=\mathrm{XA}\right\},
$$

i.e., U is the subset of matrices of M_{nn} that commute with A. Prove that U is a subspace of M_{nn}.

Problem

Let A be a fixed (arbitrary) $\mathrm{n} \times \mathrm{n}$ real matrix, and define

$$
\mathrm{U}=\left\{\mathrm{X} \in \mathrm{M}_{\mathrm{nn}} \mid \mathrm{AX}=\mathrm{XA}\right\},
$$

i.e., U is the subset of matrices of \mathbf{M}_{nn} that commute with A. Prove that U is a subspace of M_{nn}.

Solution

- Let $\mathbf{0}_{\mathrm{nn}}$ denote the $\mathrm{n} \times \mathrm{n}$ matrix of all zeros. Then $\mathrm{A} \mathbf{0}_{\mathrm{nn}}=\mathbf{0}_{\mathrm{nn}}$ and $0_{\mathrm{nn}} \mathrm{A}=0_{\mathrm{nn}}$, so $\mathrm{A} 0_{\mathrm{nn}}=0_{\mathrm{nn}} \mathrm{A}$. Thus $0_{\mathrm{nn}} \in \mathrm{U}$.

Problem

Let A be a fixed (arbitrary) $\mathrm{n} \times \mathrm{n}$ real matrix, and define

$$
\mathrm{U}=\left\{\mathrm{X} \in \mathrm{M}_{\mathrm{nn}} \mid \mathrm{AX}=\mathrm{XA}\right\},
$$

i.e., U is the subset of matrices of M_{nn} that commute with A. Prove that U is a subspace of \mathbf{M}_{nn}.

Solution

- Let $\mathbf{0}_{\mathrm{nn}}$ denote the $\mathrm{n} \times \mathrm{n}$ matrix of all zeros. Then $\mathrm{A} \mathbf{0}_{\mathrm{nn}}=\mathbf{0}_{\mathrm{nn}}$ and $0_{\mathrm{nn}} \mathrm{A}=\mathbf{0}_{\mathrm{nn}}$, so $\mathrm{A} 0_{\mathrm{nn}}=\mathbf{0}_{\mathrm{nn}} \mathrm{A}$. Thus $\mathrm{o}_{\mathrm{nn}} \in \mathrm{U}$.
- Suppose $\mathrm{X}, \mathrm{Y} \in \mathrm{U}$. Then $\mathrm{AX}=\mathrm{XA}$ and $\mathrm{AY}=\mathrm{YA}$, implying that

$$
\mathrm{A}(\mathrm{X}+\mathrm{Y})=\mathrm{AX}+\mathrm{AY}=\mathrm{XA}+\mathrm{YA}=(\mathrm{X}+\mathrm{Y}) \mathrm{A},
$$

and thus $\mathrm{X}+\mathrm{Y} \in \mathrm{U}$, so U is closed under addition.

Problem

Let A be a fixed (arbitrary) $\mathrm{n} \times \mathrm{n}$ real matrix, and define

$$
\mathrm{U}=\left\{\mathrm{X} \in \mathrm{M}_{\mathrm{nn}} \mid \mathrm{AX}=\mathrm{XA}\right\}
$$

i.e., U is the subset of matrices of \mathbf{M}_{nn} that commute with A. Prove that U is a subspace of \mathbf{M}_{nn}.

Solution

- Let $\mathbf{0}_{\mathrm{nn}}$ denote the $\mathrm{n} \times \mathrm{n}$ matrix of all zeros. Then $\mathrm{A} \mathbf{0}_{\mathrm{nn}}=\mathbf{0}_{\mathrm{nn}}$ and $0_{\mathrm{nn}} \mathrm{A}=0_{\mathrm{nn}}$, so $\mathrm{A} 0_{\mathrm{nn}}=0_{\mathrm{nn}} \mathrm{A}$. Thus $0_{\mathrm{nn}} \in \mathrm{U}$.
- Suppose $\mathrm{X}, \mathrm{Y} \in \mathrm{U}$. Then $\mathrm{AX}=\mathrm{XA}$ and $\mathrm{AY}=\mathrm{YA}$, implying that

$$
\mathrm{A}(\mathrm{X}+\mathrm{Y})=\mathrm{AX}+\mathrm{AY}=\mathrm{XA}+\mathrm{YA}=(\mathrm{X}+\mathrm{Y}) \mathrm{A}
$$

and thus $\mathrm{X}+\mathrm{Y} \in \mathrm{U}$, so U is closed under addition.

- Suppose $\mathrm{X} \in \mathrm{U}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{AX}=\mathrm{XA}$, implying that

$$
\mathrm{A}(\mathrm{kX})=\mathrm{k}(\mathrm{AX})=\mathrm{k}(\mathrm{XA})=(\mathrm{kX}) \mathrm{A} ;
$$

thus $\mathrm{kX} \in \mathrm{U}$, so U is closed under scalar multiplication.
By the subspace test, U is a subspace of \mathbf{M}_{nn}.

Problem

Let $\mathrm{t} \in \mathbb{R}$, and let

$$
\mathrm{U}=\{\mathrm{p} \in \mathcal{P} \mid \mathrm{p}(\mathrm{t})=0\},
$$

i.e., U is the subset of polynomials that have t as a root. Prove that U is a vector space.

Problem

Let $\mathrm{t} \in \mathbb{R}$, and let

$$
\mathrm{U}=\{\mathrm{p} \in \mathcal{P} \mid \mathrm{p}(\mathrm{t})=0\},
$$

i.e., U is the subset of polynomials that have t as a root. Prove that U is a vector space.

Proof.

- Let $\mathbf{0}$ denote the zero polynomial. Then $\mathbf{0}(\mathrm{t})=0$, and thus $\mathbf{0} \in \mathrm{U}$.

Problem

Let $\mathrm{t} \in \mathbb{R}$, and let

$$
\mathrm{U}=\{\mathrm{p} \in \mathcal{P} \mid \mathrm{p}(\mathrm{t})=0\},
$$

i.e., U is the subset of polynomials that have t as a root. Prove that U is a vector space.

Proof.

- Let $\mathbf{0}$ denote the zero polynomial. Then $\mathbf{0}(\mathrm{t})=0$, and thus $\mathbf{0} \in \mathrm{U}$.
- Let $\mathrm{q}, \mathrm{r} \in \mathrm{U}$. Then $\mathrm{q}(\mathrm{t})=0, \mathrm{r}(\mathrm{t})=0$, and

$$
(\mathrm{q}+\mathrm{r})(\mathrm{t})=\mathrm{q}(\mathrm{t})+\mathrm{r}(\mathrm{t})=0+0=0 \text {. }
$$

Therefore, $q+r \in U$, so U is closed under addition.

Problem

Let $\mathrm{t} \in \mathbb{R}$, and let

$$
\mathrm{U}=\{\mathrm{p} \in \mathcal{P} \mid \mathrm{p}(\mathrm{t})=0\},
$$

i.e., U is the subset of polynomials that have t as a root. Prove that U is a vector space.

Proof.
Let $\mathbf{0}$ denote the zero polynomial. Then $\mathbf{0}(\mathrm{t})=0$, and thus $\mathbf{0} \in \mathrm{U}$.

- Let $\mathrm{q}, \mathrm{r} \in \mathrm{U}$. Then $\mathrm{q}(\mathrm{t})=0, \mathrm{r}(\mathrm{t})=0$, and

$$
(\mathrm{q}+\mathrm{r})(\mathrm{t})=\mathrm{q}(\mathrm{t})+\mathrm{r}(\mathrm{t})=0+0=0 .
$$

Therefore, $\mathrm{q}+\mathrm{r} \in \mathrm{U}$, so U is closed under addition.

- Let $\mathrm{q} \in \mathrm{U}$ and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{q}(\mathrm{t})=0$ and

$$
(\mathrm{kq})(\mathrm{t})=\mathrm{k}(\mathrm{q}(\mathrm{t}))=\mathrm{k} \cdot 0=0 .
$$

Therefore, $\mathrm{kq} \in \mathrm{U}$, so U is closed under scalar multiplication.
By the subspace test, U is a subspace of \mathcal{P}, and thus is a vector space.

Examples (more...)

1. It is routine to verify that \mathcal{P}_{n} is a subspace of \mathcal{P} for all $\mathrm{n} \geq 0$.

Examples (more...)

1. It is routine to verify that \mathcal{P}_{n} is a subspace of \mathcal{P} for all $\mathrm{n} \geq 0$.
2. $\mathrm{U}=\left\{\mathrm{A} \in \mathrm{M}_{22} \mid \mathrm{A}^{2}=\mathrm{A}\right\}$ is NOT a subspace of \mathbf{M}_{22}.

To prove this, notice that I_{2}, the two by two identity matrix, is in U , but $2 \mathrm{I}_{2} \notin \mathrm{U}$ since $\left(2 \mathrm{I}_{2}\right)^{2}=4 \mathrm{I}_{2} \neq 2 \mathrm{I}_{2}$, so U is not closed under scalar multiplication.

Examples (more...)

1. It is routine to verify that \mathcal{P}_{n} is a subspace of \mathcal{P} for all $\mathrm{n} \geq 0$.
2. $\mathrm{U}=\left\{\mathrm{A} \in \mathrm{M}_{22} \mid \mathrm{A}^{2}=\mathrm{A}\right\}$ is NOT a subspace of \mathbf{M}_{22}.

To prove this, notice that I_{2}, the two by two identity matrix, is in U , but $2 \mathrm{I}_{2} \notin \mathrm{U}$ since $\left(2 \mathrm{I}_{2}\right)^{2}=4 \mathrm{I}_{2} \neq 2 \mathrm{I}_{2}$, so U is not closed under scalar multiplication.
3. $\mathrm{U}=\left\{\mathrm{p} \in \mathcal{P}_{2} \mid \mathrm{p}(1)=1\right\}$ is NOT a subspace of \mathcal{P}_{2}.

Because the zero polynomial is not in $\mathrm{U}: \mathbf{0}(1)=0$.
4. $\mathrm{C}^{\mathrm{n}}([0,1]), \mathrm{n} \geq 1$, is a subspace of $\mathrm{C}([0,1])$.

Subspaces and Spanning Sets

Linear Combinations and Spanning Sets

Linear Combinations and Spanning Sets

Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}$ be a subset of V .

1. A vector $\mathbf{u} \in \mathrm{V}$ is called a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$ if there exist scalars $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
\mathbf{u}=\mathrm{a}_{1} \mathbf{u}_{1}+\mathrm{a}_{2} \mathbf{u}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathbf{u}_{\mathrm{n}} .
$$

2. The set of all linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$ is called the span of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$, and is defined as

$$
\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}=\left\{\mathrm{a}_{1} \mathbf{u}_{1}+\mathrm{a}_{2} \mathbf{u}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathbf{u}_{\mathrm{n}} \mid \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}} \in \mathbb{R}\right\} .
$$

Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}$ be a subset of V .

1. A vector $\mathbf{u} \in \mathrm{V}$ is called a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$ if there exist scalars $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
\mathbf{u}=\mathrm{a}_{1} \mathbf{u}_{1}+\mathrm{a}_{2} \mathbf{u}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathbf{u}_{\mathrm{n}} .
$$

2. The set of all linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$ is called the span of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$, and is defined as

$$
\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}=\left\{\mathrm{a}_{1} \mathbf{u}_{1}+\mathrm{a}_{2} \mathbf{u}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathbf{u}_{\mathrm{n}} \mid \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}} \in \mathbb{R}\right\} .
$$

3. If $\mathrm{U}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}$, then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\}$ is called a spanning set of U .

Problem

Is it possible to express $x^{2}+1$ as a linear combination of

$$
x+1, \quad x^{2}+x, \quad \text { and } \quad x^{2}+2 ?
$$

Equivalently, is $\mathrm{x}^{2}+1 \in \operatorname{span}\left\{\mathrm{x}+1, \mathrm{x}^{2}+\mathrm{x}, \mathrm{x}^{2}+2\right\}$?

Problem

Is it possible to express $x^{2}+1$ as a linear combination of

$$
x+1, \quad x^{2}+x, \quad \text { and } \quad x^{2}+2 ?
$$

Equivalently, is $x^{2}+1 \in \operatorname{span}\left\{x+1, x^{2}+x, x^{2}+2\right\} ?$

Solution
Suppose that there exist $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$ such that

$$
\mathrm{x}^{2}+1=\mathrm{a}(\mathrm{x}+1)+\mathrm{b}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{c}\left(\mathrm{x}^{2}+2\right) .
$$

Then

$$
\mathrm{x}^{2}+1=(\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}+(\mathrm{a}+2 \mathrm{c})
$$

implying that $\mathrm{b}+\mathrm{c}=1, \mathrm{a}+\mathrm{b}=0$, and $\mathrm{a}+2 \mathrm{c}=1$.

Solution (continued)

Hence,

1. If this system is consistent, then we have found a way to express $x^{2}+1$ as a linear combination of the other vectors; otherwise,
2. if the system is inconsistent and it is impossible to express $x^{2}+1$ as a linear combination of the other vectors.

Because

$$
\operatorname{det}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & -2 \\
1 & 0 & 2
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\right)=-3 \neq 0
$$

Answer: Yes, i.e., $x^{2}+1 \in \operatorname{span}\left\{x+1, x^{2}+x, x^{2}+2\right\}$.

Remark

By solving the linear equation

$$
\begin{aligned}
\mathrm{b}+\mathrm{c} & =1 \\
\mathrm{a}+\mathrm{b}+ & =0 \\
\mathrm{a}+2 \mathrm{c} & =1
\end{aligned}
$$

we find that

$$
\mathrm{a}=-\frac{1}{3}, \quad \mathrm{~b}=\frac{1}{3}, \quad \mathrm{c}=\frac{2}{3} .
$$

Hence,

$$
\mathrm{x}^{2}+1=-\frac{1}{3}(\mathrm{x}+1)+\frac{1}{3}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\frac{2}{3}\left(\mathrm{x}^{2}+2\right)
$$

Problem

Let

$$
\mathbf{u}=\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{rr}
1 & 3 \\
-1 & 1
\end{array}\right]
$$

Is $\mathbf{w} \in \operatorname{span}\{\mathbf{u}, \mathbf{v}\}$? Prove your answer.

Problem

Let

$$
\mathbf{u}=\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{rr}
1 & 3 \\
-1 & 1
\end{array}\right] .
$$

Is $\mathbf{w} \in \operatorname{span}\{\mathbf{u}, \mathbf{v}\}$? Prove your answer.

Solution (partial)
Suppose there exist $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ such that

$$
\left[\begin{array}{rr}
1 & 3 \\
-1 & 1
\end{array}\right]=\mathrm{a}\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\mathrm{a}+2 \mathrm{~b} & =1 \\
-\mathrm{a}+\mathrm{b} & =3 \\
2 \mathrm{a}+\mathrm{b} & =-1 \\
\mathrm{a}+0 \mathrm{~b} & =1 .
\end{aligned}
$$

What remains is to determine whether or not this system is consistent. Answer: No.

Example

The set of 3×2 real matrices,

$$
\mathbf{M}_{32}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Example

The set of 3×2 real matrices,

$$
\mathbf{M}_{32}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Remark (A Spanning Set of \mathbf{M}_{mn})

In general, the set of $m n m n$ matrices that have a ' 1 ' in position (i, j) and zeros elsewhere, $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, constitutes a spanning set of M_{mn}.

Example

Let $\mathrm{p}(\mathrm{x}) \in \mathcal{P}_{3}$. Then $\mathrm{p}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}$ for some $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \in \mathbb{R}$. Therefore,

$$
\mathcal{P}_{3}=\operatorname{span}\left\{1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}\right\} .
$$

Example

Let $\mathrm{p}(\mathrm{x}) \in \mathcal{P}_{3}$. Then $\mathrm{p}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}$ for some $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \in \mathbb{R}$. Therefore,

$$
\mathcal{P}_{3}=\operatorname{span}\left\{1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}\right\} .
$$

Remark (A Spanning Set of \mathcal{P}_{n})

For all $\mathrm{n} \geq 0$,

$$
\mathcal{P}_{\mathrm{n}}=\operatorname{span}\left\{\mathrm{x}^{0}, \mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\}=\operatorname{span}\left\{1, \mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}\right\} .
$$

$$
\operatorname{span}\{\cdots\} \text { is a subspace and the smallest one. }
$$

Theorem

Let V be a vector space, let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}} \in \mathrm{V}$, and let

$$
\mathrm{U}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\} .
$$

Then

1. U is a subspace of V containing $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$.
2. If W is a subspace of V and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}} \in \mathrm{W}$, then $\mathrm{U} \subseteq \mathrm{W}$. In other words, U is the "smallest" subspace of V that contains $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$.

$$
\operatorname{span}\{\cdots\} \text { is a subspace and the smallest one. }
$$

Theorem

Let V be a vector space, let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}} \in \mathrm{V}$, and let

$$
\mathrm{U}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}\right\} .
$$

Then

1. U is a subspace of V containing $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$.
2. If W is a subspace of V and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}} \in \mathrm{W}$, then $\mathrm{U} \subseteq \mathrm{W}$. In other words, U is the "smallest" subspace of V that contains $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}}$.

Remark

This theorem should be familiar as it was covered in the particular case $\mathrm{V}=\mathbb{R}^{\mathrm{n}}$. The proof of the result in \mathbb{R}^{n} immediately generalizes to an arbitrary vector space V .

Problem
Let
$A_{1}=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], A_{2}=\left[\begin{array}{rr}0 & 1 \\ 1 & -1\end{array}\right], A_{3}=\left[\begin{array}{rr}1 & -1 \\ -1 & 0\end{array}\right], A_{4}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
Show that $\mathbf{M}_{22}=\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\}$.

Problem
Let
$A_{1}=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], A_{2}=\left[\begin{array}{rr}0 & 1 \\ 1 & -1\end{array}\right], A_{3}=\left[\begin{array}{rr}1 & -1 \\ -1 & 0\end{array}\right], A_{4}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
Show that $\mathbf{M}_{22}=\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\}$.

Remark

We need to prove two inclusions

$$
\begin{gathered}
\mathrm{M}_{22} \subseteq \operatorname{span}\left\{\mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \\
\text { and } \\
\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \subseteq \mathrm{M}_{22}
\end{gathered}
$$

Proof. (First proof)

Let

$$
\mathrm{E}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \mathrm{E}_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \mathrm{E}_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \mathrm{E}_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Since $\mathbf{M}_{22}=\operatorname{span}\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}\right\}$ and $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4} \in \mathbf{M}_{22}$, it follows from the previous Theorem that

$$
\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \subseteq \mathbf{M}_{22}
$$

Proof. (First proof)

Let

$$
\mathrm{E}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \mathrm{E}_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \mathrm{E}_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \mathrm{E}_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Since $\mathbf{M}_{22}=\operatorname{span}\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}\right\}$ and $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4} \in \mathbf{M}_{22}$, it follows from the previous Theorem that

$$
\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \subseteq \mathbf{M}_{22}
$$

Now show that $\mathrm{E}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 4$, can be written as a linear combination of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, i.e., $\mathrm{E}_{\mathrm{i}} \in \operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\}$ (lots of work to be done here!), and apply the previous Theorem again to show that

$$
\mathbf{M}_{22} \subseteq \operatorname{span}\left\{\mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\}
$$

Proof. (Second proof)
(1) Since $A_{1}, A_{2}, A_{3}, A_{4} \in M_{22}$ and M_{22} is a vector space,

$$
\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \subseteq \mathbf{M}_{22}
$$

Proof. (Second proof)
(1) Since $A_{1}, A_{2}, A_{3}, A_{4} \in M_{22}$ and \mathbf{M}_{22} is a vector space,

$$
\operatorname{span}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \subseteq \mathbf{M}_{22}
$$

(2) For any $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbf{M}_{22}$, we need to find x_{1}, \cdots, x_{4}, such that

$$
\mathrm{x}_{1} \mathrm{~A}_{1}+\mathrm{x}_{2} \mathrm{~A}_{2}+\mathrm{x}_{3} \mathrm{~A}_{3}+\mathrm{x}_{4} \mathrm{~A}_{4}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

$$
\begin{gathered}
\Uparrow \mathfrak{\imath} \\
\mathrm{x}_{1} \\
-\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}+\mathrm{x}_{4}=\mathrm{a} \\
-\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}+\mathrm{x}_{4}=\mathrm{b} \\
\mathrm{x}_{1}-\mathrm{x}_{2}
\end{gathered}
$$

Since the coefficient matrix is invertible one can find unique solution and so

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{span}\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

Therefore, $\mathbf{M}_{22} \subseteq \operatorname{span}\left\{\mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\}$.

Problem

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1, \mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$, and $\mathrm{r}(\mathrm{x})=\mathrm{x}+1$. Prove that $\mathcal{P}_{2}=\operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\}$.

Problem

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1, \mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$, and $\mathrm{r}(\mathrm{x})=\mathrm{x}+1$. Prove that $\mathcal{P}_{2}=\operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\}$.

Solution (sketch)
(1) Since $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x}) \in \mathcal{P}_{2}$ and \mathcal{P}_{2} is a vector space,

$$
\operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\} \subseteq \mathcal{P}_{2} .
$$

Problem

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1, \mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$, and $\mathrm{r}(\mathrm{x})=\mathrm{x}+1$. Prove that $\mathcal{P}_{2}=\operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\}$.

Solution (sketch)
(1) Since $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x}) \in \mathcal{P}_{2}$ and \mathcal{P}_{2} is a vector space,

$$
\operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\} \subseteq \mathcal{P}_{2} .
$$

(2) As we've already observed, $\mathcal{P}_{2}=\operatorname{span}\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$. To complete the proof, show that each of $1, x$ and x^{2} can be written as a linear combination of $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$, i.e., show that

$$
1, \mathrm{x}, \mathrm{x}^{2} \in \operatorname{span}\{\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})\} .
$$

Then apply the previous Theorem.

